
MetaSyn™
Rhapsody™/SysML Synthesis to SystemC

ExperMeta
 www.ExperMeta.com © 2010 ExperMeta

The development of embedded and computing systems has become quite complex. Time-
to-market pressures, multiple dimensions of design trade-offs, quality, safety and reliability
all factor in, as well as overall cost. Rational Rhapsody from IBM is a proven system
design tool. But, there’s still a need to facilitate an automated flow from Rhapsody’s
SysML description to both software and hardware implementation. MetaSyn, from
innovative startup ExperMeta, provides that bridge. MetaSyn’s SysML to SystemC
synthesis enables flows for architectural trade-offs, for hardware synthesis, and for
software simulation on virtual platforms.
Electronic systems have incredible time-to-market requirements. As software content increases, and
hardware nodes move ever-downward, automated flows starting at higher levels of abstraction are the
only way to successfully build systems. Software development must begin earlier in the project, as well
as hardware verification. More architectural trade-offs are required to achieve an optimum balance
between speed, power, weight, functionality and cost. Rhapsody is an established system design tool.
Combining MetaSyn with Rhapsody enables automation from system design to hardware and software.

Rhapsody:
UML/SysML

Software:
C/C++

DOORS:
Requirements

import
refine

generate Automation
Gap!

Hardware:
SystemC

co-execution
 & validation

Hardware/Software System Workflow
In the system workflow,
requirements are captured in
DOORS, then imported into
Rhapsody. Rhapsody can
automatically generate software,
but not hardware descriptions.
The hardware models are needed
to work with tools for architectural
analysis/optimization, hardware
implementation, and software
simulation and validation.
ExperMeta’s MetaSyn bridges this
Automation Gap in the flow.

Automated Generation of SystemC Models Critical to Successful Flow
  Leverage SysML executable models and validation
 Quicken availability of domain-appropriate models for software and hardware development
  Ensure consistency with Systems Engineering perspective
  Reduce errors introduced through manual SystemC creation
  Easily propagate top-level changes to lower levels

MetaSyn™
Rhapsody™/SysML Synthesis to SystemC

ExperMeta
 www.ExperMeta.com © 2010 ExperMeta

Rhapsody/SysML Synthesis → SystemC
SysML in Rhapsody is untimed
and sequential, so how does
MetaSyn generate cycle
accurate, concurrent
descriptions in SystemC?
MetaSyn bridges the execution
semantics by its sophisticated
synthesis engine. MetaSyn’s
technology coordinates the
parallel execution and
guarantees preservation of
transaction order, something
that a naïve translation cannot.
SysML structure is mapped to
SystemC modules, state
machine behavior is mapped to
SystemC component structures,
and AND-state concurrency is
mapped to multiple SystemC
processes within a block. Also,
timing and hardware specific
artifacts such as clock/reset
lines are automatically
generated.

SysML Annotations
•  Timing spec
•  Clock/Reset options
•  TLM 2.0 options
•  other options

MetaSyn

SysML 

Harmony 
Refinement 
Process 

SysML 

Un4med 
model 

simulated 
in 

Rhapsody 

SystemC 
LT 

SystemC 
Cycle 

Accurate 

Applica4on 
Development 

Timing Model 

Timing Model 

RTL via  
SystemC 
Synthesis  

SysML 
SystemC 

AT 
Architectural 
Explora4on 

SystemC is a C++ library with various levels of timing abstraction.
Loosely timed (LT) models can be used in very fast software
simulations for application validation. Approximately timed (AT)
models are often used for architectural exploration. And cycle
accurate models can be used either as a starting point for
synthesis to RTL, or as a reference model for functional verification
of manually generated RTL. MetaSyn can generate SystemC at all
levels of timing abstraction, supporting all these critical flows.

Hardware, Software Flows with SystemC

MetaSyn 

MetaSyn 

MetaSyn 

